MOTION SICKNESS IN CARS: A holistic approach of a design pattern for constructing in-car motion sickness studies

A. Brietzkeab, R. Pham Xuanac, A. Dettmannb, A. C. Bullingerb

a Group Research, Volkswagen AG, 38448 Wolfsburg, Germany (adrian.brietzke@volkswagen.de)
b Professur Arbeitswissenschaft und Innovationsmanagement, Technische Universität Chemnitz, 09117 Chemnitz, Germany
c Fachgebiet FVb, Institut für Land- und Seeverkehr, Fakultät V, Technische Universität Berlin, 13350 Berlin, Germany

Presented at HFES Europe Chapter 2018 Berlin, October 8-10

The issue of Motion Sickness across a variety of disciplines has an ancient history. For land transport as in cars it was already scientifically focused on back in the 1980th. Nevertheless in today’s manual driven automotive world no explicit measures to reduce motion sickness are applied. With the development of automated driving and an enlargement of passenger’s activities in cars, the demand for cues becomes stronger. In order to develop measures, the theories of the underlying conflict can easily be reviewed. The challenge is to apply this knowledge to generate empirically strong results for the provoking everyday situation1. This leads to the aim of the design pattern presented, which is to offer an overview for the major considerations. Additionally white spots in the methodology of motion sickness testing are mentioned.

Video watching.

Motion sickness questionnaire make you sick?

• Recording of subjective motion sickness
• Longitudinal control of cars by digital

STEP 1: VESTIBULAR
signal origin: artificial ↔ realistic

STEP 2: VISUAL
Foveal and peripheral

source: digital ↔ real resolution: detailed ↔ abstract

repetition: constant ↔ irregular

STEP 3: COMPOSITION
duration: short ↔ long combination: none ↔ multiple

e.g. realistic irregular acceleration, brake, move, little movement, peripheral car environment in proceeding vehicle

PRE-EVALUATION
Motion Sickness Severity
none ↔ low ↔ medium ↔ high

MOTION SICKNESS DETECTION

- SUBJECTIVE
questionnaire for subject2 examiner frequency: continuous ↔ event based

- OBJECTIVE
physiological: heart rate, temperature, skin conductivity, cognitive: workload

e.g. verbal continuous (60s) questionnaire for conscious of symptoms (nausea, headache, dizziness), eye- & headtracking

EXECUTION ISSUES
- Motion sickness detection
- Ethical validation
- Subject information, consent and protection
- Testing area, dropout-handling3
- Prevention of motion sickness consequences

As an outlook some areas of special research interest:

- The definition of subject susceptibility and influence of individual motion history4
- Side effects / bias of motion sickness awareness or direct questioning of symptoms on measured rating5

References

1 Keshavarz, B. & Hecht, H. (2011). Validating an efficient method to quantify motion sickness.
2 Keshavarz, B. & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness.

Driving study with two vehicles in artificial stop & go situation

• Passenger tasks in following Vehicle:
 A) Focussing on preceding car
 B) Watching movie

• Sample groups: resistant (n=30) and susceptible (n=30)

• 11 minutes of driving on straight highway

• Longitudinal control of cars by digital command and AdaptiveCruiseControl

• Recording of subjective motion sickness symptom rating by the subject and head / eye movement

This literature-based structure was developed by the inspiration of about 40 years of studies focusing on car sickness. A number of 233 publications was found. 35 publications of those executed real driving studies.

The reviewed knowledge was used to execute six real driving studies. Each study showed strong case dependent specifications that would exaggerate the idea of a general pattern. Therefore, strongly motion sickness depending considerations are listed (blue) and the belonging variations or extremes added. To help the reader understand the category, an example out of one self-conducted study is given (yellow).

Some considerations are referenced by important sources, which give a basic understanding of the topic or show the potential of further research.