User-Range Interaction

Can I reach my destination? Or do I already have to charge?

- Advancing BEVs: Not only battery capacity ➔ key design goal ➔ usable range
- Address human factors of range & enable optimal utilization of range
- Essential for developing sustainable electric mobility systems [1][2]
- Prerequisite: understanding user-range interaction
- Dealing with BEV range = control task – ACOR model [3][4]

- Individual comfortable range = actual usable range = target for system design
- Key task: understanding dynamics (variance) in comfortable range

Research questions:
(Q1) Transfer of resource interaction styles from combustion vehicle to BEV
(Q2) Level of practical experience vs. comfortable range?
(Q3) Relevance of comfortable range for BEV acceptance?

Method

Field trial setup & BEV
- BEV field trial focused on user-range interaction [5]
- Data collection before (T0), after 6 weeks (T1), after 12 weeks (T2)
- BMW ActiveE (130-160 km range)

Participants
- People applied for three-month lease (370-450€ per month, N = 673 applicants)
- Requirement: mobility profile leading to frequent interaction with range
- N = 74, M_age = 43.4 years (SD = 9.3), 16% female, 58% university degree

Scales and measures
Comfortable range scenario task - CRST (label: ComfRange-BEV) [T0,T1,T2]
- Assesses preferred proportional comfortable range utilization (+ score values += comfortable range – = range safety buffers)
- Standardized scenario & special response grid to identify threshold value [α]
- Comfortable range indicator combustion vehicle (label: ComfRange-CV) [T0]
- Minimalistic CRST: standardized scenario & 2 items from CRST = range experience given certain available range buffer, Cronbach’s α = .71
- General low-range aversiveness CV (label: LowRangeAverse-CV) [T0]
- 4 items (e.g. “I always want to have a fuel reserve in the tank.”), α = .81
- BEV Acceptance (label: Accept-BEV) [T2]
- 9-item scale of Van der Laan, Heino, & De Waard, 1997 [7]
- Sub-scales satisfaction (α = .83) & usefulness (α = .78), all items α = .88

Results

(Q1) Transfer of resource interaction from combustion vehicle (CV) to BEV
- ComfRange-CV (T0) vs. ComfRange-BEV (T0,T1,T2):
 - T0-T0: r = .43, p < .001
 - T0-T1: r = .48, p < .001
 - T0-T2: r = .22, p = .042
- LowRangeAverse-CV (T0) vs. ComfRange-BEV (T1,T2):
 - T0-T0: r = .32, p = .004
 - T0-T1: r = .30, p = .006
 - T0-T2: r = .06, p = .304

(Q2) The role of practical experience for comfortable range
- Total distance driven with BEV (T1,T2) vs. ComfRange-BEV (T1,T2):
 - T1-T1: r = .33, p = .004
 - T2-T2: r = .34, p = .004

(Q3) Relevance of comfortable range for BEV acceptance
- ComfRange-BEV (T2) vs. ...
 - general BEV satisfaction (T2): r = .39, p = .001
 - general BEV usefulness (T2): r = .33, p < .004
 - composite BEV acceptance (T2): r = .41, p < .001

Conclusions

(Q1): Results indicate considerable transfer of resource interaction styles
- Notable: ComfRange-CV not only accounts for T0-ComfRange-BEV (i.e., drivers without BEV experience)
- CV comfortable range predicts usable range after first adaptation to BEV (T1)
- However: weak effect for T2 – further research into adaptation process needed

(Q2): Higher levels of practical experience related to higher comfortable range
- Adds to body of evidence showing relevance of practical experience [3][6]
- Comfortable range is not only a function of habits from CV usage

(Q3): Higher comfortable range positively related to general BEV acceptance
- Remarkable given many other possible predictors of BEV acceptance
- Results in perspective: one step in the agenda of developing a comprehensive understanding of user-range interaction = user interaction with limited resources
- Contribution to knowledge related to human factors in low-resource systems [8]

Meet the e-mobility user group at Technische Universität Chemnitz

References:

This research is based on a field trial that was set up by a consortium of the BMW Group, Stadtwerke Leipzig, and Technische Universität Chemnitz and was funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (16DM9148B). Statements in this paper reflect the authors’ views and do not necessarily reflect those of the funding body or of the project partners. We are grateful for the support of our consortium partners, the BMW Group (particularly Dr. Roman Vilmek, Viktora Zitt, Dr. Andreas Keinath, Dr. Jens Rambsdrock) and Stadtwerke Leipzig, who made our research possible. We also grateful thank Torsten Müller, Dr. Johann Pienninger and Oliver Angermayer for collecting and pre-processing data logger.